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Karhunen-Loeve mode control of chaos in a reaction-diffusion process
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We introduce a chaos control method that stabilizes unstable states of a spatiotemporal process based on
analyzing the dynamics of the main coherent structure in the data represented by the highest energy Karhunen-
Loeve mode. The problem is then reduced to the application of embedding techniques to the control of a time
series given by the amplitude of a dominant spatial mode. The algorithm is applied to a reaction-diffusion
process where we stabilize an unstable orbit inside a chaotic regime. One advantage of the control procedure
is that it is independent of sensor placement. Furthermore, we find the desired control state is achieved
exponentially, and the procedure can be applied directly to experimental data.@S1063-651X~97!01407-4#

PACS number~s!: 05.45.1b, 82.20.2w, 82.40.Bj
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I. INTRODUCTION

Chaos control based on variations of the technique p
sented in@1# has now been applied to many experiments
many different fields of science@2#. Successful control for
many of these experiments occurs mostly for low dime
sional dynamical systems. Some of these low dimensio
systems may be embedded in high dimensional spaces
occur in continuous spatiotemporal systems governed
nonlinear partial differential equations. Examples of some
the applications possessing low dimensional but unstable
havior include periodic and steady state behavior in non
ear multimode lasers@3#, steady motion in Rayleigh-Be´nard
convection@4#, and traveling waves in wide aperture lase
@5# and plasma discharge tubes@6#.

In this paper, we are interested in stabilizing unsta
states and eliminating chaos in a spatiotemporal proces
using the natural dynamics of the system; i.e., we wish
control chaos based on exploiting stable manifolds alre
present in the data. This type of control is based on a g
metric model constructed directly from data obtained
well-known embedding techniques@7,8#. The geometric
model contains important information about the flow, such
attractors and stable and unstable manifolds, and replace
equations of state with an approximate model of phase sp
The control amounts to finding suitable states in the giv
data and using parameter adjustments to maintain the sy
on a desired state by directing the process to stable manif
that can be identified from data. This approach to chaos c
trol was initiated by Ott, Grebogi, and Yorke@1#, and has
been extended to allow the controlled state to be mainta
as parameters are varied@9,10#, i.e., track, or continue, the
controlled state as a function of parameters. The combina
of control and tracking has been successful in stabilizing
dimensional attractors modeled by both low and high dim
sional equations of state; see, for example, the experim
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in @11,3#. The next step was to address processes that
continuous in space, such as those used in modeling burs
in reaction-diffusion processes.

In @12#, the authors have introduced an algorithm for co
trolling unstable states of a spatiotemporal process and
plied it to the same reaction-diffusion system presented
this paper. It is a generic model that reproduces the s
tiotemporal two-front bursting patterns observed for
chlorite-iodide reaction in the Couette flow reactor. It pr
vides rich dynamics, most of which have been observed
perimentally@13,14#. The chaotic and intermittent burstin
regime we address is likely to be observed in certain exp
ments@15#. The algorithm introduced in@12# was based on
sampling the data in the most active region at a fixed spa
point. Time series embedding methods were then use
analyze the dynamics at the fixed spatial point. Control w
then implemented by adjusting the flow-feed rate at
boundary to maintain the system on the stable manifold o
desired orbit.

The main drawback to spatiotemporal control of low d
mensional objects using the adaptive time series from
single point is that it may be extremely sensitive to measu
ment location. Other control techniques that are nonadap
also suffer from spatial location measurement problems
@6#, the total success of control using a fixed delay and g
is highly dependent on where the probe is placed. In p
this is due to uncorrelated regions in space of the dynam
It may also be a result of low energy output of the signal
certain spatial regions. It is the purpose of this paper to
tempt to provide a partial solution to this problem for sp
tiotemporal systems.

In this paper we propose an alternate control algorit
based on analyzing the dynamics of the dominant cohe
structures contained in a spatiotemporal pattern of the
tem. We decompose the chaotic solution of the reacti
diffusion system into its main coherent structures also kno
as Karhunen-Loeve~KL ! modes or empirical eigenfunction
@16#. These are structures that best approximate the solu
in the mean square sense. The most dominant structure i
one that when properly normalized and projected back o
the solution yields the maximum mean square energy,
can therefore be thought of as the most representative sp
structure in a statistical sense. Repeated application of
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56 205KARHUNEN-LOEVE MODE CONTROL OF CHAOS INA . . .
procedure yields a complete hierarchy of structures ran
according to their mean square energy content. Such a s
modes describes an optimal coordinate system with res
to the data. An important property is that these modes
uncorrelated, which may be interpreted as each mode re
senting a statistically independent object. As shown in@17#
the modes may be an efficient means of representing
data, rather than Fourier modes. The KL modes allow
compact representation of the data and may be used for
compression and development of low-dimensional mod
@18,17#. It would therefore be of interest to investigate t
possibility of controlling a spatiotemporal process based
monitoring its main coherent structures, since the measur
signal information is most likely captured in the most en
getic modes.

For the reaction-diffusion model we consider, we ha
found that control based on monitoring the dynamics of
highest energy KL mode stabilizes the whole spatial proc
Compared to our previous control method@12#, this method
locks on the desired state exponentially fast, and since
jection of the spatiotemporal solution on a KL mode is
volved, we eliminate the problem of choosing an appropri
domain location for sampling the data. In the previo
method, control had to be based on observing the dynam
in the most active region.

A method similar in spirit was introduced in@19# for
monitoring ignition and extinction in a catalytic wafer fo
exothermic oxidation reactions. Projection on the main
mode is used in a state variable control method to main
the system in a stable state with a small basin of attrac
that is destabilized by noise. Our method also observes
amplitude of the main KL mode with the difference that w
use it for parameter control to maintain states that are
stable. Essential to our method is the constructive use of
local dynamics by embedding techniques in addition to
serving the projection of the data on the main KL mode.

This paper is organized as follows: in Sec. II we pres
the reaction-diffusion model. Then we review in Sec. III t
Karhunen-Loeve procedure. In Sec. IV we introduce the
gorithm and in Sec. V we give numerical examples. We e
the paper with a discussion section.

II. THE MODEL

We consider the following one-dimensional reactio
diffusion system:

]u

]t
5D

]2u

]x2
1
1

e
@v2 f ~u!#,

~1a!

]v
]t

5D
]2v
]x2

2u1a, xP@0,1#,

subject to Dirichlet boundary conditions:

u~x50,0!5u0 , v~x50,0!5v0
~1b!

u~x51,0!5u0 , v~x51,0!5v0 .

Parameterse and a are assumed positive and fixed. Th
choice of the Van der Pol–like reaction term determines
types of patterns that form. In@20# a wide range of patterns i
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presented for different choices of nonlinear functionf . The
dynamics becomes more complex asD→0, and the patterns
for small diffusion are more difficult to realize experime
tally as well as numerically. The observed patterns inclu
stationary and oscillating single-front and multiple-front pa
terns as well as patterns in which single- and multiple-fro
patterns alternate. These generic patterns can be observ
any reaction-diffusion system regardless of the physical p
nomenon it models, depending only on the existence of
S-shaped slow manifold governed by the nonlinear funct
f @15#.
For our method we will consider the two-front patte

with two diffusion-dominated regions at the boundaries a
chaotic bursting occurring in the middle region~Fig. 1!. The
nonlinear term we consider is given byf (u)5u21u3, and
ensures the existence of anS-shaped slow manifold consist
ing of three branches. The upper and lower branches at
the trajectories in a time of order 1/e. The chaos observed fo
this system consists of small amplitude chaos that takes p
on the middle branch of the manifold with chaotic large a
plitude bursts when the dynamics visits the upper bran
The remarkable feature of this chaotic pattern is that it co
not be observed in the absence of diffusion, and the chem
reaction itself would evolve in a steady manner@20#.

III. KARHUNEN-LOEVE DECOMPOSITION

In this section we describe briefly the KL decompositi
applied to a chaotic spatiotemporal pattern of the reacti
diffusion model presented above. This is a procedure
mode expansion for spatiotemporal processes that extr
the relevant degrees of freedom of the dynamics of a la
data set. The modes are defined by the data and constit
natural coordinate system that approximates the data o
mally in theL2 norm. The modes are orthogonal, accounti
for spatially independent features of the data. The proced
is associated with the names of Karhunen@21# and Loeve
@22# and was first applied to spatiotemporal dynamics
Lorenz @23#, for weather prediction, under the name
proper orthogonal expansion, and by Lumley@24#, for the
study of fluid turbulence problems.~See@25# for a review of
the KL method and turbulence.!

The procedure applies to a discretized spatiotemporal
tern, say a solution of Eq.~1!, u(x,t)5„u(x,t),v(x,t)…,
given in terms of a computational spatial gridx
5(x1 ,...,xp), and at discrete intervals in time$tn%:

$un~x!%5$u~x,tn!%n51,M . ~2!

The KL eigenmodes are the eigenfunctions of the au
correlation matrixK(x,x8). This matrix is given by

K~x,x8!5^u~x,t !u~x8,t !&,

where the brackets stand for time average and the ve
product is the dyadic product. Explicitly an element
K(x,x8) is given by

Ki j5
1

M (
n51

M

„u~xi ,tn!u~xj ,tn!1u~xi ,tn!v~xj ,tn!

1v~xi ,tn!u~xj ,tn!1v~xi ,tn!v~xj ,tn!…. ~3!
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FIG. 1. ~a! Spatiotemporal pat-
tern for theu variable~dimension-
less units! in the reaction-
diffusion model. These data wer
expanded in KL modes. Paramete
values used here are D
50.032249, a50.1, e50.1.
Boundary conditions areu(0,t)
5u(1,t)522, v(0,t)5v(1,t)5
24. ~b! Detailed view of the pat-
tern in Fig. 1~a!.
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The fieldu may be expanded as

u~x,t !5(
n

an~ t !cn~x!, ~4!

where the amplitudes of the KL modes are orthogonal
time:

^an~ t !am~ t !&5lndnm ,

where the left term is a time average. So, in this represe
tion, the Fourier coefficientsan(t) are decorrelated. As a
result, when projecting the data~2! back onto each eigen
mode we get uncorrelated time series from each mode,
resenting statistically independent phenomena. An eig
value ofK may be written as

ln5
~cn ,Kcn!

icni 5^u~cn ,u!u2&,

where the angular brackets stand for time averaging, so a
eigenvalue may be interpreted as giving the mean energ
the system projected on the corresponding eigenmode.

The KL modes, i.e., the eigenfunction ofK, can be ob-
tained equivalently by a minimization procedure@16,26#. To
find the first eigenmode of a given data set, one determ
the one spatial structure, which when properly normaliz
and projected onto the data yields the maximum mean sq
energy, so it is the most representative structure in a sta
cal sense. Once this eigenmode is found, we find the sec
mode by repeating the procedure foru2a1c1(x) continuing
n
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this process. This yields a hierarchy of spatial structu
ranked according to mean square energy content, determ
by the data itself.

In practice, determining the eigenfunctions of the corre
tion matrix creates computational difficulties due to the lar
size of the matrixK. An alternate method to compute the K
modes by which one can reduce the size of the matrix
volved is the method of snapshots due to Sirovich@16#. This
method consists in determining the eigenfunctions ofK, as a
combination of the time snapshots with coefficients depe
ing on time:

C~x,t !5
1

M (
k51

M

ak~ t !uk~x!.

These coefficients are determined as eigenvalues of a
correlation matrixC with elements

C~ t,s!5^u~x,t !u~x,s!&,

whereN is the number of spatial mesh points.C is anM
3M matrix, whereM is the number of time snapshots.

We performed KL decomposition on a chaotic solution
the system~1!. The pattern for theu variable is shown in
Figs. 1~a! and 1~b! and consists in two diffusion-dominate
regions at the boundaries separated by a reaction-domin
region where chaotic bursting occurs. This two-front patte
simulates phenomena in a Couette flow reactor occurring
a result of diffusion interacting with the chemical reactio
when the mass transport is weak compared to diffusion.
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56 207KARHUNEN-LOEVE MODE CONTROL OF CHAOS INA . . .
In Fig. 2 we show the five highest energy KL mod
obtained by applying the procedure to the a chaotic solu
of Eq. ~1!, (u,v), where theu component is shown in Fig
1~a!. The highest energy mode contains 94% of the to
energy, the second highest energy mode contains 5%,
the other three modes below 0.1%.

In Fig. 3 we show a color map for the coefficients of t
correlation matrix corresponding to the pattern in Fig. 1~a!.
The regions with coefficients close to 1 in absolute va
represent regions with strong correlation. Both the horizon
and vertical axes represent space. We notice that nea
boundaries, in the regions where diffusion dominates,
data are strongly correlated. We also see that in the midd
the interval, where the process is mainly due to the chem

FIG. 2. The five-highest energy KL modes.~a! u components.
~b! v components~dimensionless units!.
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reaction, the data are strongly correlated. However, diffus
and reaction regions are uncorrelated with each other.
when sampling a single time series for control, the probe
to be placed in the reaction-dominated region@12#. Placing a
probe in the diffusion-dominant regime and measuring
time series produces very little signal. In practice, any no
in the system would dominate the signal, impeding the
quisition of information for control.

IV. THE KL MODE CONTROL ALGORITHM

The algorithm we present stabilizes unstable states o
spatiotemporal process modeled from experimental data.
dynamics is reconstructed and unstable states are iden
together with the local linear structure, directly from da
Control is achieved by adjusting an accessible param
based on monitoring the amplitude of the highest ene
Karhunen-Loeve modes.

The algorithm addresses spatiotemporal data, such
solution of the reaction-diffusion system~1!, or in general
any spatiotemporal pattern obtained from experimental m
surements. The first step is to find a representation of
dynamics, enabling one to identify orbits that are of inter
for control. For this we use the embedding methods, wh
allow one to recover the phase-portrait information direc
from data without first obtaining an analytical model. Esse
tially these techniques amount to taking appropriate time
ries and building a geometric model from it, in an approp
ate space, in such a way that the differential structure n
the orbits to be controlled is preserved. In this way the nat
of the dynamical objects in the original phase space, suc
stable and unstable manifolds, is preserved.

The embedding methods have been initially designed
processes depending only on time. When the data dep
also on space the issue is how to sample it in space and
time series to extract from the spatiotemporal data to rec
struct the dynamics. This will depend in general on the s
cific process under consideration. Moreover, for the purp
of control, we need to find information only about the loc

FIG. 3. Grey scale map of the correlation matrix obtained fro
the data in Fig. 1. Regions with the same shade stand for sp
regions where data are strongly correlated.
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208 56IOANA TRIANDAF AND IRA B. SCHWARTZ
dynamics near an orbit of interest. In@6# a case is shown o
chaos in tube discharge, where the dynamics has to
sampled at a fixed spatial point, namely, near the catode
order to achieve control and eliminate chaos in the en
tube. In a previous paper@12# the authors have introduced
method for stabilizing unstable states of the reacti
diffusion system~1!. In that method, in order to achiev
control, we sampled the dynamics at a single spatial po
The point had to be chosen anywhere in the reacti
dominated regime, i.e., in the middle third of the unit interv
in Fig. 1~a!. Due to strong correlation in space, it sufficed
sample a single time series and address the dynamics of
time series in order to achieve control of the entire s
tiotemporal pattern. If we sample in the diffusion-dominat
region and apply the same procedure the algorithm fails

As shown also in@19# the appropriate sampling in space
always an important issue for control. In the alterna
method we propose here, we eliminate this problem by t
ing as our time series the amplitude of the highest energy
mode and using it to analyze the dynamics. This time se
contains information on the statistically most representa
spatial structure. This is the terma1(t) in the expansion~4!.
By construction, the highest energy KL mode is the o
structure that best approximates the spatiotemporal patte
L2 norm. For the system~1! the highest energy KL mode
contains 90% of the energy. Heuristically, that means t
about 90% of the data, in time, lies close to this mode, wh
is shown in Fig. 2. By using this approach of sampling t
dynamics, we essentially approximateu by the first term in
the expansion~4!.

We further reduce the dimension of the sampled dynam
by sampling the chosen time series discretely, for exam
at the successive maxima. This gives a map of the form

an115F~an ,p!,

wherep is the control parameter andan denotes the succes
sive maxima ofa1(t). The control parameter will be take
to be one of the Dirichlet boundary conditions. So we cont
by adjusting the feed rate at one of the boundaries. The
F is shown in Fig. 4 where we identify a period-one unsta

FIG. 4. First return map of the maxima ofa(t), the amplitude
of the first KL mode~dimensionless units!.
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orbit in the dynamics. The data in Fig. 4 constitute the g
metric model we use for control. From these data we iden
the stable and unstable directions associated with the pe
one unstable orbit that we need in order to apply a con
algorithm. As our linear control algorithm, we used the O
Grebogi-Yorke ~OGY! control method, which consists in
changing the parameter at each iteration of the mapF, so
that the next iterate will fall on the stable manifold of th
orbit we want to stabilize. The orbit to stabilize is a perio
one saddle of the mapF, which we denote byu0 , i.e., a0
5F(a0 ,p). This would correspond to a periodic functio
a(t) and a time-periodic pattern of the original solution
(u,v) of Eq. ~1!. From the data it is possible to determine t
eigenvalues and eigenvectors of an orbit, for example,
using a least square fit for data near the desired orbit. Kn
ing such quantities, linear control can be applied. For a tw
dimensional mapF, with stable and unstable eigenvalu
ls and lu , the OGY technique requires the parame
change

dpn[
lujn–fu

~lu21!g•fu
, ~5!

wherej is the distance from the current iterate to the or
chosen for control,fu is the contravariant vector correspon
ing to the unstable direction, and the vectorg is the deriva-
tive of the unstable stateu0 with respect to the paramete
p. g can also be determined from data by knowing the or
at two nearby values ofp.

For our system, the mapF is nearly one dimensional
which amounts tols50, in which case formula~5! becomes

dpn[
lu@an2a0~p!#

~lu21!g
. ~6!

Summarizing the method consists in monitoring the a
plitude of the highest energy KL mode and adjusting t
control parameter every time it goes through a local maxim
according to Eq.~6!. The adjusted value of the parameter
fed back into the partial differential equation solver at eve
maxima ofa1(t) and the equation is integrated in time un
a new maximum is reached. We make note here that
though the dynamics and control representations in Eqs.~5!
and~6! are discrete, the parameter fluctuations at the bou
ary are not pulses similar tod functions. Rather, the bound
ary condition is turned on at one maximum, and left on un
the next maximum, at which point it is adjusted based on
~6!.

V. NUMERICAL EXAMPLES

We apply the above method to the data obtained a
numerical solution of the system~1!, with f (u)5u21u3.
The u component of this solution is shown in Fig. 1. Th
middle region exhibits chaotic bursting in time. We show
Fig. 5 the time series in this pattern atx5 1

2. As we see from
Fig. 5 the solution exhibits small amplitude chaotic oscil
tions of random length, all of which take place on the midd
unstable branch of the nullcline. These small amplitude
cillations are followed by a large amplitude burst when t
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FIG. 5. Time series foru re-
corded atx5

1
2 andp522.0.
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dynamics visits the upper branch of the nullcline~the so-
called reduced states@15,20#!.

We consider for control the time series given by the a
plitude of the first KL mode. We show this time series in F
6 along with the amplitude of the second KL mode.

For the system~1! the amplitude of the highest energy K
mode,~i.e., the projection of the data on this mode! captures
the dynamics of theu variable, in the sense that the sam
bursting pattern in time is observed, i.e., growing oscil
tions, leading to small amplitude chaos of random len
followed by a large relaxation oscillation. The amplitude

FIG. 6. ~a! Amplitude of the first KL mode for the pattern in
Fig. 1. ~b! Amplitude of the second KL mode for the pattern in Fi
1.
-
.

-
h
f

the second mode mimics the dynamics of thev variable@Fig.
6~b!#.

From the time series fora1(t) we form a map by sam-
pling the dynamics at the successive maxima. This ma
shown in Fig. 4, at parameter valuesD50.032249, a
50.01, andp522.0. We can identify on this plot a fixed
point of the map that corresponds to a periodic time se
a(t). This orbit is unstable and the map is nearly one dim
sional near this fixed point, so formula~6! can be used for
control. In Fig. 7 we show a blowup of the dynamics near
unstable fixed point of period 1. The dynamics near the fix
point, represented by label 6, is iteratively labeled by
sequence•••→1→2→3→4→•••→10→11••• . The fixed
point is a flip saddle since the iterates oscillate on altern
sides of the fixed point as they leave its neighborhood.

We identify from data the value of the fixed point an
associated unstable eigenvalue and eigenvector, as we
the derivativeg of the fixed point with respect to the param
eterp.

The algorithm acts on the solution of the reactio
diffusion system as follows: we integrate the system~1! in
time and monitor the projection of the solution on the fi
KL mode. Every time this amplitude goes through a ma
mum we adjust the boundary condition~initially set at p5
22.0! according to formula~6!. The stabilized pattern is

FIG. 7. Blowup of the dynamics near the unstable period-o
fixed point in Fig. 4. Numbers indicate order of the iterate. A
though the local dynamics appears to have an attracting direc
since the nonlinear map reinjects iterate 11 into the neighborhoo
the fixed point, the map is locally one dimensional with a on
dimensional unstable manifold.
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FIG. 8. ~a! Stabilized pattern obtained by using KL control algorithm at the same parameter values as in Fig. 1. The control is int
after 250 successive bursts and the chaotic pattern returns.~b! Detailed view of the pattern in Fig. 8~a!.
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shown in Figs. 8~a! and 8~b!. After 260 iterates we releas
the control and the chaotic pattern is reestablished. The
plitude of the main KL mode in this experiment is shown
Fig. 9. In Fig. 10 we show the parameter fluctuations use
the boundary to obtain the stabilized pattern in Figs. 8~a! and
8~b!. For comparison we show in Fig. 11 the parameter fl

FIG. 9. Amplitude of the first KL mode while control is bein
active corresponding to the pattern in Fig. 8.
m-

at

-

tuations used in our previous method@12#, at p521.3. We
notice that in the new method the parameter fluctuations
one order of magnitude smaller. Another advantage is
the control locks much faster on the desired orbit witho
going through large amplitude bursts in the parameter be
it locks on the desired orbit. When basing the control on

FIG. 10. Adjustments in the feed rate used to obtain the c
trolled pattern in Fig. 8.
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sampled time series at a fixed spatial point, the chang
concentration at the boundary needs time until it propaga
by diffusion or traveling wave, and affects the monitor
times series. Once this time series is stabilized, due to st
correlation in space the whole pattern is stabilized. Wh
basing control on measuring the amplitude of the first
mode, control is more efficient, even though the geomet
of the two time series are quite similar. By controlling th
amplitude of the first mode we address the spatiotemp
pattern uniformly, since most of the data~90%! lie close to
the spatial structure represented by the first mode, so sm
adjustments are necessary, which act on the system m
faster.

We have also applied this control method when monit
ing the amplitude of the second highest energy KL mo
This is a mode that contains only 4% of the energy, a
stands for a spatial structure statistically decorrelated fr
the first mode. We noticed that the large amplitude bursts
eliminated but the small amplitude chaos is unaffected
control. This can be explained by the shape of the mode
Fig. 2. We notice that the first mode has a high peak in
first component and a low peak in the second compon
That tells us that most of the data in the high bursts in
u variable and most of the data in the small amplitude ch
of thev variable are captured by this mode. The second
mode has a high peak in both components, which indica
that data related to the high amplitude bursts are containe
this spatial structure; no information about the small am
tude chaos is contained in this mode.

VI. DISCUSSION

We have introduced a method for stabilizing unsta
states of spatiotemporal processes and applied it t
reaction-diffusion equation. The method combines rec
structing the dynamics from time series, with Karhune
Loeve mode representation of spatiotemporal data. We h
showed that we can control the chaotic bursting in a mo

FIG. 11. Adjustments in the feed rate used for controlling pe
odic bursting atp521.3, when the control method is based
local measurements@12#. The control fluctuations are one order
magnitude larger than for the KL control method which are sho
in Fig. 10.
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of a chemical process by controlling the amplitude of t
highest energy KL mode.

One feature of the KL control method is that it does r
quire more data than other low-dimensional control metho
even though a time series approach is used to reconstruc
relevant phase space. Specifically, to extract the relev
modes for control, the spatial data must be sampled ov
sufficiently large time interval. The solution at a second p
rameter is also necessary to obtain the derivative of the c
trolled state with respect to the parameter. However, gi
the improved state of the art in data taking and compu
tional efficiency, for certain problems such as the reacti
diffusion experiments presented in@19#, we feel the approach
is well within the limits of feasibility.

Another feature of the KL method of control pertains
the propagation of control pulses into the medium. T
reaction-diffusion problem considered is one that opera
far from equilibrium state determined by the solution of t
nullclines v5 f (a) and u5a. Nonequilibrium conditions
are created by placing the boundary conditions far from
equilibrium state, which in turn sets up a gradient in t
system. A gradient in reaction-diffusion systems is o
mechanism that may generate traveling waves@27#. There-
fore, when a control pulse is applied at the boundary, o

FIG. 12. The spatiotemporal pattern generated when we take
difference (u* ,v* ) between the chaotic solution and the same c
otic solution with a pulse at the boundary during a single cycle.~a!
the difference in theu variable u* . ~b! the difference in thev
variablev* .
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expects a wave to be generated as a result of diffusion
reaction.

The way control affects the solution can be understood
looking at a single pulse in the control parameter~i.e., one of
the boundary conditions!, which is kept on for an entire
cycle. We plotted in Figs. 12~a! and ~b! the difference
(u* ,v* ), between the solution with a single pulse and t
chaotic solution without a pulse. This plot reveals the con
bution of a single pulse to the spatiotemporal pattern.
notice the pulse generates a traveling wave that propag
inside the domain for theu variable. This behavior is distinc
from the case where only diffusion is present~case not
shown!. Changes in the boundary condition are felt in t
center of the domain very quickly, almost instantaneously
the v variable,u acts as a source term, and diffusion dom
nates.

One of the interesting questions about using KL mo
expansion for dynamics control is how many KL modes
sufficient for effective control. One can, in theory, project t
original model onto all KL modes which results in a se
ys
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albeit large, of coupled nonlinear ODE’s. However, embe
ding theory states that all relevant information from
modes is contained in the amplitude of a single mode. T
amplitude is then embedded in an appropriate space. W
the dynamics can be embedded in a space of relatively
dimension, it is natural to use time series embedding me
ods for analysis and control.

Finally, the method we present is more robust than pre
ous methods@12,6# in that it does not require special plac
ment of time series measurements and control adjustm
are one order of magnitude smaller. Presently we are inv
tigating the extension of the method to models where
unstable dynamics is higher dimensional.
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