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Karhunen-Loeve mode control of chaos in a reaction-diffusion process
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We introduce a chaos control method that stabilizes unstable states of a spatiotemporal process based on
analyzing the dynamics of the main coherent structure in the data represented by the highest energy Karhunen-
Loeve mode. The problem is then reduced to the application of embedding techniques to the control of a time
series given by the amplitude of a dominant spatial mode. The algorithm is applied to a reaction-diffusion
process where we stabilize an unstable orbit inside a chaotic regime. One advantage of the control procedure
is that it is independent of sensor placement. Furthermore, we find the desired control state is achieved
exponentially, and the procedure can be applied directly to experimenta[84a@63-651X97)01407-4

PACS numbgs): 05.45:+hb, 82.20—w, 82.40.Bj

[. INTRODUCTION in [11,3]. The next step was to address processes that are
continuous in space, such as those used in modeling bursting
Chaos control based on variations of the technique preln reaction-diffusion processes. _
sented in[1] has now been applied to many experiments in Ir_1 [12], the authors have mtrod_uced an algorithm for con-
many different fields of sciencE]. Successful control for trolling unstable states of a spatiotemporal process and ap-

many of these experiments occurs mostly for low dimenp”.ed it to the sSame reaqtion—diffusion system presented in
pis paper. It is a generic model that reproduces the spa-

sional dynamical systems. Some of these low dimensionai‘ temporal two-front bursting patterns observed for a
systems may be embedded in high dimensional spaces, acﬁlorite-iodide reaction in the Couette flow reactor. It pro-

%Eme'gr Cc;?:i'glu;#zr:ﬁggf ;ergggéils Sé)s(;emmsleg%\;esrgrii g ides rich dynamics, most of which have been observed ex-
P q ) P erimentally[13,14]. The chaotic and intermittent bursting

the _applications pc_;ss_essing low dimensional bu_t un_stable_b egime we address is likely to be observed in certain experi-
havior m_clude periodic and steady_stat_e behav_|0r in nonl'”'ments[lS]. The algorithm introduced if12] was based on
ear multimode laserf3], steady motion in Rayleigh-Berd  gampling the data in the most active region at a fixed spatial
convection[4], and traveling waves in wide aperture laserspoint. Time series embedding methods were then used to
[5] and plasma discharge tubje. analyze the dynamics at the fixed spatial point. Control was
In this paper, we are interested in stabilizing unstablehen implemented by adjusting the flow-feed rate at the
states and eliminating chaos in a spatiotemporal process lyoundary to maintain the system on the stable manifold of a
using the natural dynamics of the system; i.e., we wish tajesired orbit.
control chaos based on exploiting stable manifolds already The main drawback to spatiotemporal control of low di-
present in the data. This type of control is based on a geanensional objects using the adaptive time series from a
metric model constructed directly from data obtained bysingle point is that it may be extremely sensitive to measure-
well-known embedding techniqueg?,8]. The geometric ment location. Other control techniques that are nonadaptive
model contains important information about the flow, such aglso suffer from spatial location measurement problems. In
attractors and stable and unstable manifolds, and replaces tH&l, the total success of control using a fixed delay and gain
equations of state with an approximate model of phase spact. highly dependent on where the probe is placed. In part,
The control amounts to finding suitable states in the giverfhis is due to uncorrelated regions in space of the dynamics.
data and using parameter adjustments to maintain the systefn™ay also be a result of low energy output of the signal in
on a desired state by directing the process to stable manifol¢Eain spatla! regions. It is the_ purpose of this paper to at-
that can be identified from data. This approach to chaos corf€MPt 0 provide a partial solution to this problem for spa-
trol was initiated by Ott, Grebogi, and YorHd], and has IOtlinlﬁ?sra;l;ggrtevrye&propose an alternate control algorithm
been extended to a"OW. the controlled state to be. mamtalnegased on analyzing the dynamics of the dominant coherent
as parameters are vari¢#,10], i.e., track, or continue, the

. .~ structures contained in a spatiotemporal pattern of the sys-
controlled state as a function of parameters. The ComblnatloRem We decompose the chaotic solution of the reaction-

of control and tracking has been successful in stabilizing lowision system into its main coherent structures also known
d]menS|onaI .attractors modeled by both low and high d|_men;,j1s Karhunen-LoevéKL) modes or empirical eigenfunctions
sional equations of state; see, for example, the experimen3g). These are structures that best approximate the solution
in the mean square sense. The most dominant structure is the
one that when properly normalized and projected back onto
*Mailing address: U.S. Naval Research Laboratory, Speciathe solution yields the maximum mean square energy, and
Project for Nonlinear Science, Code 6700.3, Plasma Physics Diviean therefore be thought of as the most representative spatial
sion, Washington, DC 20375-5000. structure in a statistical sense. Repeated application of the

1063-651X/97/561)/204(9)/$10.00 56 204 © 1997 The American Physical Society



56 KARHUNEN-LOEVE MODE CONTROL OF CHAOS INA. .. 205

procedure yields a complete hierarchy of structures rankegresented for different choices of nonlinear functiorThe
according to their mean square energy content. Such a set dfnamics becomes more complex2s-0, and the patterns
modes describes an optimal coordinate system with respefdr small diffusion are more difficult to realize experimen-
to the data. An important property is that these modes arelly as well as numerically. The observed patterns include
uncorrelated, which may be interpreted as each mode repretationary and oscillating single-front and multiple-front pat-
senting a statistically independent object. As showilir]l  terns as well as patterns in which single- and multiple-front
the modes may be an efficient means of representing thgatterns alternate. These generic patterns can be observed in
data, rather than Fourier modes. The KL modes allow forany reaction-diffusion system regardless of the physical phe-
compact representation of the data and may be used for date@menon it models, depending only on the existence of the
compression and development of low-dimensional model$-shaped slow manifold governed by the nonlinear function
[18,17. It would therefore be of interest to investigate the f [15].
possibility of controlling a spatiotemporal process based on For our method we will consider the two-front pattern
monitoring its main coherent structures, since the measurablgith two diffusion-dominated regions at the boundaries and
signal information is most likely captured in the most ener-chaotic bursting occurring in the middle regid#ig. 1). The
getic modes. nonlinear term we consider is given liyu)=u?+u®, and

For the reaction-diffusion model we consider, we haveensures the existence of &shaped slow manifold consist-
found that control based on monitoring the dynamics of thang of three branches. The upper and lower branches attract
highest energy KL mode stabilizes the whole spatial processhe trajectories in a time of orderél/The chaos observed for
Compared to our previous control methidd], this method  this system consists of small amplitude chaos that takes place
locks on the desired state exponentially fast, and since pran the middle branch of the manifold with chaotic large am-
jection of the spatiotemporal solution on a KL mode is in-plitude bursts when the dynamics visits the upper branch.
volved, we eliminate the problem of choosing an appropriatéThe remarkable feature of this chaotic pattern is that it could
domain location for sampling the data. In the previousnot be observed in the absence of diffusion, and the chemical
method, control had to be based on observing the dynamiagaction itself would evolve in a steady manii2e).
in the most active region.

A method similar in Spil’it was introduced I['ﬂ.g] for 1. KARHUNEN-LOEVE DECOMPOSITION
monitoring ignition and extinction in a catalytic wafer for
exothermic oxidation reactions. Projection on the main KL In this section we describe briefly the KL decomposition
mode is used in a state variable control method to maintai@pplied to a chaotic spatiotemporal pattern of the reaction-
the system in a stable state with a small basin of attractiofliffusion model presented above. This is a procedure of
that is destabilized by noise. Our method also observes th@ode expansion for spatiotemporal processes that extracts
amplitude of the main KL mode with the difference that we the relevant degrees of freedom of the dynamics of a large
use it for parameter control to maintain states that are undata set. The modes are defined by the data and constitute a
stable. Essential to our method is the constructive use of theatural coordinate system that approximates the data opti-
local dynamics by embedding techniques in addition to obmally in theL? norm. The modes are orthogonal, accounting
serving the projection of the data on the main KL mode. for spatially independent features of the data. The procedure

This paper is organized as follows: in Sec. Il we preseniS associated with the names of Karhurl@1] and Loeve
the reaction-diffusion model. Then we review in Sec. Il the[22] and was first applied to spatiotemporal dynamics by
Karhunen-Loeve procedure. In Sec. IV we introduce the alLorenz [23], for weather prediction, under the name of
gorithm and in Sec. V we give numerical examples. We endroper orthogonal expansion, and by Lumled], for the

the paper with a discussion section. study of fluid turbulence probleméSee[25] for a review of
the KL method and turbulende.
I. THE MODEL The procedure applies to a discretized spatiotemporal pat-

tern, say a solution of Eq(l), u(x,t)=(u(x,t),v(x,t)),
We consider the following one-dimensional reaction-given in terms of a computational spatial gric

diffusion system: =(Xy,...Xp), and at discrete intervals in tin{e,}:
au Pu 1 n(x)l=
=D 5zt - lv—f(W], {u"O)F={u(x.t) n=1m - 2
(13 The KL eigenmodes are the eigenfunctions of the auto-
v 9%v correlation matrixk (x,x’). This matrix is given by
E:D W—U-Fa, XE[O,].],

K(x,x")=(u(x,t)u(x’,t)),

subject to Dirichlet boundary conditions: where the brackets stand for time average and the vector
u(x=0,00=uy, v(x=0,0=v, product is the dyadic product. Explicity an element in
' ' ' (Ib)  K(x,x') is given by

U(X:].,O):UO, U(le,o):Uo- 1 M
Parameterse and a are assumed positive and fixed. The  Kii=yy nzl (Ui, E)U(X) s tn) + Ui t)o (X))

choice of the Van der Pol-like reaction term determines the
types of patterns that form. [20] a wide range of patterns is +u(X, t)u(x,ty) o (X, thv(Xj,th)). 3)
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FIG. 1. (a) Spatiotemporal pat-

m:] tern for theu variable(dimension-
less unity in the

(a) reaction-
20 -1.7 14 1.1 -0.8 0.5 0.2 0.1 diffusion model. These data were
expanded in KL modes. Parameter
0.60
values used here areD
‘ =0.032249, «=0.1, €=0.1.
‘ ‘ ' | » Boundary conditions areu(0;t)
x 0.50 ‘ ‘ Hi | | {1 ’ ‘ ‘ i | } I ‘ ‘ I ’ ‘ | (il =u(lh=-2, v(0h)=v(1h)=
1 IRIREIR | [] | —4. (b) Detailed view of the pat-
tern in Fig. 1a).
0.40
time
-0.50 -0.45 -0.40 -0.35 -0.30
(b) u(x,t)
The fieldu may be expanded as this process. This yields a hierarchy of spatial structures

ranked according to mean square energy content, determined
by the data itself.
u(x,t)= 2 an(t)¢n(x), 4 In practice, determining the eigenfunctions of the correla-
tion matrix creates computational difficulties due to the large
where the amplitudes of the KL modes are orthogonal irSiz€ Of the matrK. An alternate method to compute the KL
time: modes by which one can reduce the size of the matrix in-
volved is the method of snapshots due to SiroVits]. This
(an(t)am(t))=Xndnm. method consists in determining the eigenfunctionk phs a
combination of the time snapshots with coefficients depend-
where the left term is a time average. So, in this representd0d On time:
tion, the Fourier coefficients,(t) are decorrelated. As a
result, when projecting the dat2) back onto each eigen- M
mode we get uncorrelated time series from each mode, rep- P O=3 Z a(t)u(x).
resenting statistically independent phenomena. An eigen- k=1

value ofK may be written as o ) ] )
These coefficients are determined as eigenvalues of a time

(b K correlation matrixC with elements
)\n:%:q(‘/ln-l—l”z%
" C(t,s)=(u(x,t)u(x,s)),
where the angular brackets stand for time averaging, so a KL
eigenvalue may be interpreted as giving the mean energy ofhereN is the number of spatial mesh pointS.is an M
the system projected on the corresponding eigenmode. XM matrix, whereM is the number of time snapshots.

The KL modes, i.e., the eigenfunction &f, can be ob- We performed KL decomposition on a chaotic solution of
tained equivalently by a minimization proceduifes,26]. To  the system(1). The pattern for thes variable is shown in
find the first eigenmode of a given data set, one determinekigs. 1@ and Xb) and consists in two diffusion-dominated
the one spatial structure, which when properly normalizedegions at the boundaries separated by a reaction-dominated
and projected onto the data yields the maximum mean squaregion where chaotic bursting occurs. This two-front pattern
energy, so it is the most representative structure in a statistsimulates phenomena in a Couette flow reactor occurring as
cal sense. Once this eigenmode is found, we find the secora result of diffusion interacting with the chemical reaction
mode by repeating the procedure for a;11(X) continuing  when the mass transport is weak compared to diffusion.
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0 the data in Fig. 1. Regions with the same shade stand for spatial
@ space regions where data are strongly correlated.
0.3 ) . .
—T—Tode§ reaction, the data are strongly correlated. However, diffusion
—+— Mode 4 and reaction regions are uncorrelated with each other. So
—X— Mode 3 when sampling a single time series for control, the probe has
0.2 - mgggf to be placed in the reaction-dominated regdid]. Placing a
probe in the diffusion-dominant regime and measuring a
@ time series produces very little signal. In practice, any noise
§ in the system would dominate the signal, impeding the ac-
E 0.1 quisition of information for control.
X
k]
'5-: IV. THE KL MODE CONTROL ALGORITHM
<
o
g 0.0 The algorithm we present stabilizes unstable states of a
§ spatiotemporal process modeled from experimental data. The
dynamics is reconstructed and unstable states are identified
together with the local linear structure, directly from data.
-0.1 . . S .
Control is achieved by adjusting an accessible parameter
based on monitoring the amplitude of the highest energy
Karhunen-Loeve modes.
0.2 e e The algorithm addresses spatiotemporal data, such as a
0 10 20 30 40 50 solution pf the reaction—diffusior_u systefd), or in_ general
) space any spatiotemporal pattern obtained from experimental mea-

surements. The first step is to find a representation of the
FIG. 2. The five-highest energy KL modes) u components. dynamics, enablin_g one to identify orbits_ that are of inter_est
(b) v componentgdimensionless units for control. For this we use the embedding methods, which
allow one to recover the phase-portrait information directly

In Fig. 2 we show the five highest energy KL modesfrom data without first obtaining an analytical model. Essen-
obtained by applying the procedure to the a chaotic solutiotially these techniques amount to taking appropriate time se-
of Eg. (1), (u,v), where theu component is shown in Fig. ries and building a geometric model from it, in an appropri-
1(a). The highest energy mode contains 94% of the totahte space, in such a way that the differential structure near
energy, the second highest energy mode contains 5%, arle orbits to be controlled is preserved. In this way the nature

the other three modes below 0.1%. of the dynamical objects in the original phase space, such as
In Fig. 3 we show a color map for the coefficients of the stable and unstable manifolds, is preserved.
correlation matrix corresponding to the pattern in Figa)1 The embedding methods have been initially designed for

The regions with coefficients close to 1 in absolute valueprocesses depending only on time. When the data depend
represent regions with strong correlation. Both the horizontahlso on space the issue is how to sample it in space and what
and vertical axes represent space. We notice that near tliene series to extract from the spatiotemporal data to recon-

boundaries, in the regions where diffusion dominates, theatruct the dynamics. This will depend in general on the spe-

data are strongly correlated. We also see that in the middle afific process under consideration. Moreover, for the purpose

the interval, where the process is mainly due to the chemicadf control, we need to find information only about the local
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-0.5 orbit in the dynamics. The data in Fig. 4 constitute the geo-
metric model we use for control. From these data we identify
the stable and unstable directions associated with the period-
1.0 4 . one unstable orbit that we need in order to apply a control
algorithm. As our linear control algorithm, we used the Ott-
. Grebogi-Yorke (OGY) control method, which consists in
i changing the parameter at each iteration of the faso
Lt that the next iterate will fall on the stable manifold of the
| e orbit we want to stabilize. The orbit to stabilize is a period-
b . one saddle of the map, which we denote by, i.e., aq
2.0 e L =F(ag,p). This would correspond to a periodic function
a(t) and a time-periodic pattern of the original solution of
(u,v) of Eq.(1). From the data it is possible to determine the
2.5 ——————— eigenvalues and eigenvectors of an orbit, for example, by
2.5 -2.0 -1.5 -1.0 -0.5 using a least square fit for data near the desired orbit. Know-
o ing such quantities, linear control can be applied. For a two-
dimensional mapF, with stable and unstable eigenvalues
FIG. 4. First return map of the maxima af(t), the amplitude A, and \,, the OGY technique requires the parameter

-1.5

®ne

of the first KL mode(dimensionless unijs change
dynamics near an orbit of interest. [6] a case is shown of Noén-fu
chaos in tube discharge, where the dynamics has to be opn= (Nn—D)g f,’ 5

sampled at a fixed spatial point, namely, near the catode, in

order to achieve control and eliminate chaos in the entirg hare ¢ s the distance from the current iterate to the orbit
tube. In a previous pap¢l2] the authors have introduced a cyosen for controff, is the contravariant vector correspond-
method for stabilizing unstable states of the react|on-Ing to the unstable direction, and the vectpis the deriva-

diffusion system(1). In that method, in order to achieve tive of the unstable state, with respect to the parameter

control, we sampled the dynamics at a single spatial point, o a1 4150 be determined from data by knowing the orbit
The point had to be chosen anywhere in the reactionét two nearby values gf

_don"_linated regime, i.e., in the mid(;lle third of the_unit i_nterval For our system, the map is nearly one dimensional,
in Fig. 1(a)..Due tp strong correlation in space, it sufflced to WpiCh amounts o= 0, in which case formulés) becomes
sample a single time series and address the dynamics of tha
time series in order to achieve control of the entire spa- N @ o(P)]
tiotemporal pattern. If we sample in the diffusion-dominated Spn= Zut®n TOOR (6)
region and apply the same procedure the algorithm fails. (A—Dg

As shown also i19] the appropriate sampling in space is o o o
always an important issue for control. In the alternate Summarizing the method consists in monitoring the am-
method we propose here, we eliminate this problem by takPlitude of the highest energy KL mode and adjusting the
ing as our time series the amplitude of the highest energy Kicontrol parameter every time it goes through a local maxima,
mode and using it to analyze the dynamics. This time seriegccording to Eq(6). The adjusted value of the parameter is
contains information on the statistically most representativded back into the partial differential equation solver at every
spatial structure. This is the term(t) in the expansiort4). ~ Maxima ofa,(t) and the equation is integrated in time until
By construction, the highest energy KL mode is the oned Néw maximum is reached. We make note here that al-
structure that best approximates the spatiotemporal pattern fRough the dynamics and control representations in E5s.
L2 norm. For the systentl) the highest energy KL mode and(6) are discrete, _th(_e parameter fluctuations at the bound-
contains 90% of the energy. Heuristically, that means tha@'y are not pulses similar té functions. Rather, the bound-
about 90% of the data, in time, lies close to this mode, whicty condition is turned on at one maximum, and left on until
is shown in Fig. 2. By using this approach of sampling thethe next maximum, at which point it is adjusted based on Eq.
dynamics, we essentially approximateby the first term in
the expansiori4).

We further reduce the dimension of the sampled dynamics V. NUMERICAL EXAMPLES
by sampling the chosen time series discretely, for example,

at the successive maxima. This gives a map of the form We apply the above method to the data obtained as a
numerical solution of the systerfl), with f(u)=u?+u?.
an+1=F(an,p), The u component of this solution is shown in Fig. 1. The
middle region exhibits chaotic bursting in time. We show in
wherep is the control parameter ang, denotes the succes- Fig. 5 the time series in this patternat 3. As we see from
sive maxima ofa4(t). The control parameter will be taken Fig. 5 the solution exhibits small amplitude chaotic oscilla-
to be one of the Dirichlet boundary conditions. So we controltions of random length, all of which take place on the middle
by adjusting the feed rate at one of the boundaries. The mapnstable branch of the nullcline. These small amplitude os-
F is shown in Fig. 4 where we identify a period-one unstablecillations are followed by a large amplitude burst when the
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E bk FIG. 5. Time series fou re-

corded atx=3 andp=—2.0.
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time

dynamics visits the upper branch of the nuliclittte so- the second mode mimics the dynamics of theariable[Fig.
called reduced stat¢45,20). 6(b)].

We consider for control the time series given by the am- From the time series fow(t) we form a map by sam-
plitude of the first KL mode. We show this time series in Fig. pling the dynamics at the successive maxima. This map is
6 along with the amplitude of the second KL mode. shown in Fig. 4, at parameter valud3=0.032249, «

For the systentl) the amplitude of the highest energy KL =0.01, andp=—2.0. We can identify on this plot a fixed
mode,(i.e., the projection of the data on this moaaptures  point of the map that corresponds to a periodic time series
the dynamics of theu variable, in the sense that the same «(t). This orbit is unstable and the map is nearly one dimen-
bursting pattern in time is observed, i.e., growing oscilla-sional near this fixed point, so formu(@) can be used for
tions, leading to small amplitude chaos of random lengthcontrol. In Fig. 7 we show a blowup of the dynamics near the
followed by a large relaxation oscillation. The amplitude of unstable fixed point of period 1. The dynamics near the fixed
point, represented by label 6, is iteratively labeled by the
sequence--—1—2—3—4—---—10—11--- . The fixed
point is a flip saddle since the iterates oscillate on alternate
sides of the fixed point as they leave its neighborhood.

-1.0 We identify from data the value of the fixed point and
associated unstable eigenvalue and eigenvector, as well as
the derivativeg of the fixed point with respect to the param-
eterp.

The algorithm acts on the solution of the reaction-
diffusion system as follows: we integrate the syst€inin
time and monitor the projection of the solution on the first
KL mode. Every time this amplitude goes through a maxi-
mum we adjust the boundary conditigmitially set atp=
—2.0) according to formula(6). The stabilized pattern is

-0.5

KL mode 1 amplitude

BT T T
50 120 190 260 330 400 -1.40

(@ time

-0.500 -1.56 1 11

-1.72 4
-1.125

%ne

10
-1.88 ~

-1.750 -
-2.04 - 2

-2.375 -

220 e
220 -2.04 -1.88 -1.72 -1.56 -1.40

%n

KL Mode 2 amplitude

-3.000 —— T
50 120 190 260 330 400 FIG. 7. Blowup of the dynamics near the unstable period-one
(b) time fixed point in Fig. 4. Numbers indicate order of the iterate. Al-
though the local dynamics appears to have an attracting direction
FIG. 6. () Amplitude of the first KL mode for the pattern in since the nonlinear map reinjects iterate 11 into the neighborhood of
Fig. 1. (b) Amplitude of the second KL mode for the pattern in Fig. the fixed point, the map is locally one dimensional with a one-
1. dimensional unstable manifold.
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FIG. 8. (a) Stabilized pattern obtained by using KL control algorithm at the same parameter values as in Fig. 1. The control is interrupted
after 250 successive bursts and the chaotic pattern reflmnBetailed view of the pattern in Fig.(8.

shown in Figs. 8) and &b). After 260 iterates we release tuations used in our previous methd®], atp=—1.3. We

the control and the chaotic pattern is reestablished. The ammotice that in the new method the parameter fluctuations are
plitude of the main KL mode in this experiment is shown in one order of magnitude smaller. Another advantage is that
Fig. 9. In Fig. 10 we show the parameter fluctuations used ahe control locks much faster on the desired orbit without

the boundary to obtain the stabilized pattern in Figa) 8nd  going through large amplitude bursts in the parameter before
8(b). For comparison we show in Fig. 11 the parameter flucit locks on the desired orbit. When basing the control on a
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2 2
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< -1.50 3
° _
2 175 @ -0.525
= 2
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§ -2.25 §
ir -2.50 -0.575
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8.0 7T 71T T 71— -0.600 T T T~ 1T ' T T

50 100 150 200 250 300 350 0 50 100 150 200 250
time Iterate number

FIG. 9. Amplitude of the first KL mode while control is being FIG. 10. Adjustments in the feed rate used to obtain the con-
active corresponding to the pattern in Fig. 8. trolled pattern in Fig. 8.



56 KARHUNEN-LOEVE MODE CONTROL OF CHAOS INA. .. 211

0.000 of a chemical process by controlling the amplitude of the
highest energy KL mode.

One feature of the KL control method is that it does re-
-0.625 quire more data than other low-dimensional control methods,
even though a time series approach is used to reconstruct the
relevant phase space. Specifically, to extract the relevant
1.250 4 modes for control, the spatial data must be sampled over a
sufficiently large time interval. The solution at a second pa-
rameter is also necessary to obtain the derivative of the con-
trolled state with respect to the parameter. However, given
the improved state of the art in data taking and computa-
tional efficiency, for certain problems such as the reaction-
diffusion experiments presented[itd], we feel the approach
is well within the limits of feasibility.

Another feature of the KL method of control pertains to
the propagation of control pulses into the medium. The

FIG. 11. Adjustments in the feed rate used for controlling peri-réaction-diffusion problem considered is one that operates
odic bursting atp=—1.3, when the control method is based on far from equilibrium state determined by the solution of the
local measuremenf{d.2]. The control fluctuations are one order of nullclines v=f(a) and u=«. Nonequilibrium conditions
magnitude larger than for the KL control method which are shownare created by placing the boundary conditions far from the
in Fig. 10. equilibrium state, which in turn sets up a gradient in the

system. A gradient in reaction-diffusion systems is one
sampled time series at a fixed spatial point, the change imechanism that may generate traveling wa\@g. There-
concentration at the boundary needs time until it propagate$pre, when a control pulse is applied at the boundary, one
by diffusion or traveling wave, and affects the monitored
times series. Once this time series is stabilized, due to stronn
correlation in space the whole pattern is stabilized. When
basing control on measuring the amplitude of the first KL 0.8+
mode, control is more efficient, even though the geometries
of the two time series are quite similar. By controlling the
amplitude of the first mode we address the spatiotempora 0.4+
pattern uniformly, since most of the dat@0%) lie close to
the spatial structure represented by the first mode, so smalle
adjustments are necessary, which act on the system muc o.0- : : : ,
faster. 189.0 192.0 195.0 198.0

We have also applied this control method when monitor- time

ing the amplitude of the second highest energy KL mode.

This is a mode that contains only 4% of the energy, and

stands for a spatial structure statistically decorrelated fromr 0.00000 0.00025 0.00050

the first mode. We noticed that the large amplitude bursts ar (@) ut(x,t)

eliminated but the small amplitude chaos is unaffected by
control. This can be explained by the shape of the modes ir

Fig. 2. We notice that the first mode has a high peak in the 0.8+ !
first component and a low peak in the second component | idi

That tells us that most of the data in the high bursts in the ‘l ‘“‘““« ' |
u variable and most of the data in the small amplitude chaos 04 I i A} |

Controlled Boundary

-1.875

-2.500 — 77
25 42 59 76 93 110
time

1.0

of thev variable are captured by this mode. The second KL
mode has a high peak in both components, which indicate:
that data related to the high amplitude bursts are contained i 0.0

T T T T T
186.0 189.0 192.0 195.0 198.0

this spatial structure; no information about the small ampli-
tude chaos is contained in this mode. time
VI. DISCUSSION 0.00000 0.00025 0.00050

. e (b) *(%,)
We have introduced a method for stabilizing unstable i

states of spatiotemporal processes and applied it to a fiG. 12. The spatiotemporal pattern generated when we take the
reaction-diffusion equation. The method combines recongifference (1*,v*) between the chaotic solution and the same cha-
structing the dynamics from time series, with Karhunen-otic solution with a pulse at the boundary during a single cy@e.
Loeve mode representation of spatiotemporal data. We hau@e difference in theu variable u*. (b) the difference in the
showed that we can control the chaotic bursting in a modelariablev*.
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expects a wave to be generated as a result of diffusion aralbeit large, of coupled nonlinear ODE’s. However, embed-
reaction. ding theory states that all relevant information from all

The way control affects the solution can be understood bynodes is contained in the amplitude of a single mode. This
looking at a single pulse in the control paramdtes., one of amplitude is then embedded in an appropriate space. When
the boundary conditions which is kept on for an entire the dynamics can be embedded in a space of relatively low
cycle. We plotted in Figs. X3 and (b) the difference dimension, it is natural to use time series embedding meth-
(u*,v*), between the solution with a single pulse and theods for analysis and control.
chaotic solution without a pulse. This plot reveals the contri- Finally, the method we present is more robust than previ-
bution of a single pulse to the spatiotemporal pattern. Weus method$12,6] in that it does not require special place-
notice the pulse generates a traveling wave that propagatesent of time series measurements and control adjustments
inside the domain for the variable. This behavior is distinct are one order of magnitude smaller. Presently we are inves-
from the case where only diffusion is preseftase not tigating the extension of the method to models where the
shown. Changes in the boundary condition are felt in theunstable dynamics is higher dimensional.
center of the domain very quickly, almost instantaneously. In
thetv variable,u acts as a source term, and diffusion domi- ACKNOWLEDGMENTS
nates.
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